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ON THE SELECTION OF BEST GAMMA POPULATION:
DETERMINATION OF MINIMAX SAMPLE SIZES

by

N. Dailami
M. Bhaskara Rao

Department of Probability & Statistics
The University, Sheffield

and

K. Subramanyam
Department of Mathematics & Statistics

University of Pittsburgh

ABSTRACT

Selecting the best Gamma population from a given set of Gamma populations

is treated from a decision theoretic point of view. Cost of sampling and pen-

alties for wrong decision play a role in the determination of optimum common

sample sizes. Minimax sample sizes are determined under two different penalty

functions.

AMS 1980 subject classification: primary: 62F07, secondary: 62C20.
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1. Introduction

Let '1' l 2"'"*k be k Gamma populations with unknown scale parameters

el,82,...sek respectively and a common known shape parameters c >O. The probability

density function of the i-th population wi (i -l,2,...,k) is given by

£i a -

The main objective of this article is to describe a method of selecting that Gamma

population with the least 6-value. This problem has considerable bearing on the

problem of selecting the best of several normal populations in the sense of

selecting that normal population with least variance. Basically, any selection

problem consists of two components.

1. Draw a random sample of size ni from population wi i-1,2,...,k.

2. Suggest a statistical procedure R which once the data are given clearly

spells out the best population.
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In many selection problems, a natural statistical procedure R manifests

itself. The real problem is the selection of the sample sizes. The sample sizes

are determined following certain optimality criterion. Following the lead given

by Somerville (1954) and Ofosu (1972), we determine the sample sizes taking into

account the cost of sampling and penalties imposed when wrong decisions are taken.

The nature of the determination of the sample sizes is decision-theoretic in

character and we adopt the minimax criterion as the optimality criterion. Ofosu

(1972) has studied this problem under a particular penalty function and determined

the optimal sample sizes using inimax principle. But his arguments have a gap

and it is debatable whether the sample sizes he has given are really optimal

sample sizes.

In this paper, we consider two types of penalty functions one of which is

slightly less general than the one introduced by Ofosu (1972). Under these two

penalty functions, we minimize the resultant loss functions over the entire para-

meter space for every fixed comnon sample size n. The solution to this minimiza-

tion problem works out quite explicitly overcoming the gap present in the paper

by Ofosu (1972).

For a general introduction to ranking and selection problems, the reader

may refer to Gibbons, 01kin and Sobel (1977) or Gupta and Panchapakesan (1979).

2. Preliminaries

If X1 ,X2,...,Xn is a random sample of size n from a Gamma population with
n

scale parameter e and shape parameter c, then X i is a sufficient statistic for

e for known c. Let T - T(XX2,...,X -n 1 il Xi . Then ET - cO and T has a
i=1

Gamma distribution with scale parameter en and shape parameter cn. For the problem

mentioned in the introduction, suppose that we wish to draw random samples of

same size from each population. Let XLJ, J -l,2,...,n be a random sample of size n
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from population nit i -l,2,...,k. Let Ti - T(X,1.XJ2 I...X i), in1,2,...,k.

Now, a natural statistical procedure manifests itself for selecting the best Gamma

population.

Statistical Procedure R

Declare population w (Ci -l.2...k) to be the best if T i<T for all j i.

Cost of sampling

We assume that the cost C(nj of drawing a random sample of size n from all

populations to be of the following form

C(n) - c0 + c1ad, n- ,

where coc 1 and d are non-negative constants. c0 and cI are measured in the

same units, and c represents fixed administrative costs involved in setting

up a sampling plan. If d -1, the cost of taking additional samples rises linearly

with n. If d <1, the rise in the cost does not increase relatively with increasing

sample sizes. If d > 1, it will become more and more expensive to take additional

samples.

Wrona Decisions

Let 81,82,...,8 k be a configuration of the parameters of the k populations

Tl2,.°.,k respectively. Let 8 (  . 8. be the ordered arrangement

of 8l,82,...,8k . Let nli 2 ,...,rik correspond to the parameters e(1),( 2)..., 
8 (k)

respectively. We follow the usual convention that if two or more e-values coincide

the corresponding i 's are taken to be in increasing order of magnitude. Let

T i correspond to ili for J -,2,...,k. According to the configuration

aI' 8 2"'f.,k , vi is the best population. There are k-l different ways of going

wrong. These are listed below.
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Type of
wrong
decision Description Event

2 i is declared to be the best. {T < T, j 2)

313 is declared to be the best. {Ti3 <Ti, J 03}

o o oe*go so. *a. e.* * oo

k Tr is declared to be the best. {T < Tj, j k}
'k k ij

Correct decision

Description: ii is declared to be the best.

Event: {Ti <Ti for all j =2,3,...,kI.

Calculation of probabilities of wrong and correct decisions.

Let b-cn, g.(.) the probability density function of a Gamma random variable

with scale parameter equal to unity and shape parameter equal to b and G(-) the

distribution function associated with g(). Note that nTi /6(W has Gamma dis-

tribution with scale parameter equal to unity and shape parameter equal to b. Let

pr 91,e2,..0ek ; n)

- Pra 9 ,*2, . ek (committing wrong decision of type r)

- Pr (T i < T for all j Or)

- Pr 8 l'82'' 0 sk (nTir/6(r) <(nTi 0e) )/6(r)), j Or)

w f0Pr,"2,.'k (nTi1/9 ) >9 (r)/a (W))x for all J #r)gb(x)dx

since Ti  is independent of Ti 's, j 0 r.rj
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TIG l(1-G b(CO (r A () W) gb(xW dx, (2.1)

since T i 's are independent.

for r - 23eok

Let

pl1(6e1 to2 9....ek ; n)

= Pr 8(R takes the correct decision)

- Pree (CTi <T i for all J n2,3,*..k)

} r (1t'-G( Ae W)g dx.(2)

Penalty functions

We consider two types of penalty functions.

Penalty functions of type.1

Let 9 - {(el eZ,.90ok );e i>0 for all il.

For every (6 Ve 2,..ek ) in 0 and j -2,3,...,k, let

- Penalty for taking wrong decision of type j when the

configuration of the paraeters is 8,~ .. 1k

W C 2 log(90( 2)/A M)

for some c2 > 0 which is measured in the same units as those of

c 0and c1.

06
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The rationale behind these penalty functions is explained as follows. A

critical point in the analysis of selection problems is the ability to discrimi-

nate between the best population wil with the parameter value e(1) and the second

best population i2 with the parameter value .(2)' If we accept the second best

population as the best, the penalty is c2 log(8( 2)/A(1 )). The penalty for other

types ox wrong decisions should be at least the one as the above, and for mathematical

expediency, we take this penalty to be exactly the saue as above. The loss

function now works out to be

L(6 l'e2 s"*'ek; n)

- Cost of sampling + expected penalty

k
= C(n) +c 2 J2(logC((2)/0( 1))p (a1'8 2....'8k; n)

for all (e,e 2,...,ek) in 0 and n in N, where N is the set of all

natural numbers.

(Ofosu (1972) has taken WJ(B l962"' k) to be equal to c2 log(e(Q)/6(1 )), j -2,3,...

This is more general than the one we considered above. Mathematically, with this

choice of penalty functions, the loss function seems to be intractable to carry

out optimization.)

The loss function introduced above is defined over the cartesian product space

0 xN. In order to find the minimax sample size n, we maximize L(O1,82,...,k; n)

over all (8 182,...,ek) in Ofor every fixed n in N. Then the minimax sample size

is obtained by minimizing

max L (6;n)

over all n in N. We will take up this work in Section 3.

kN
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Penalty functions of type 2

Let 0 <6 <1 and a> 0 be prescribed. The constant a is measured in the same

units as those of co, c1 and c2. We consider the following penalty functions.

For (01,82,..., Ok) in e and j -2,3,...,k, let

ele 2,...,ek) a if e </(j)l6,

-0 if e(1) (j) .

The rationale behind these penalty functions is as follows. Let e102,., k

be a configuration of the parameters of the populations frr 2 ,...t 'k respectively.

Suppose the statistical procedure R declares ni to be the best population for some

j =2,3,...,k. The parameter values associated with the best population 7i and the

population vit are 8(i ) and 8,J ) respectively. If the ratio e(1)/0(j ) (<1) of

8( ) and 8(j) is close to unity, we would not like to be penalized for taking the

wrong decision of accepting i as the best population. On the other hand, if the

ratio 8(1)/8(j) is small, we certainly wish to be penalized for accepting it asii

the best. A line has to be drawn somewhere between the statements that the ratio

8 ()/8(j ) being close to unity and that it is being small. The number 6 distin-

guishes these two statements and the choice of 6 is subjective. We assume that

the penalty for accepting the population rit (j -2,3,...,k) as the best when the

ratio 8(0)/A(j ) is small, i.e., <6 , is the same constant a. The loss function

then works out to be

k
L(919, 2,... ,Ok; n) -C(n) + W j(a1,02 k )P (6l2e 2 . . Bk;n)

for (el1,2,...,ek) in 0 and n in N.
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For a given configuration (01i 6 2,...,Gk) in 0, one could explicitly calculate the

loss. In order to find the minimax sample size, we need to maximize the loss

function over the parameter space 0 for every fixed n in N. We will take up this

problem in the next section.

3. Minimax Sample Size

In this section, we maximize the loss function L(-: n) over the parameter

space 0 for every fixed n in N under each of the penalty functions of types 1

and 2. First, we take up the case of penalty functions of type 1. The following

subset of 0 plays a crucial role in the maximization problem of the loss function.

° 0 1 2 k EO; 61 r- 2 , e2= e3= . k

for some r >1.}

(In the literature, 00 is the so-called set of least favourable choices.)

The following chain of results helps to evaluate the maximum of the loss func-

tion over 0 explicitly.

Lemma 3.1 For each ( 6 1,62,'.,k} ) o0 with 21 r-182'

Pl0el,99,..Ok ; n) a TlOU - Gb (x/r))k-l%(x)dx,

and

p Cele 2 ... ek; n) = F(1 - Gb(xr)) (1 - G b(x))k-2gb dx

for every j =2,3,...,k.

Further,

max pl L'n) max f(l-G b(x/r))k-lgb(x)dx.
ePof r> d v

Proof. By direct verification. (.Use (2.1) and (-2.2).)
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Lemma 3.2 Let C(1,2, ... ,e k ) ED. Write 6 r 6 ( (Obviously, r 1.)
• * * * * * *

Let 6 and 02=6 = k 
= e ( 2

) . Then (12

p(2 el 2,...,ek; n) >pl(e1 62..O,e k; n).

Proof. From (2.2)

pI is162,..,k; n)o b u t-hGabt() / Q )x))gb(X)dx
0j=2 

) k-i

S(i- Gb (x/r) r (x)dx,

Ssince 1/r -e (1)/6 (2) >_(1) /6(3 ) 2-... !' (1)/0e(k ) .

It is obvious that (6 ,...,e coo ByLem31

• 6 n) (1 - (x/r)) k-l b (x)dx-

This completes the proof.

The following theorem simplifies the problem of maximization mentioned earlier.

Theorem 3.3 For every n in N,

max L L,_ n) - max L(J_" n)
&',ile=e eco e

- C(n)+c 2  - Gb (x/r)) k-lgb (x)dx)

= C(n)+c (k-1) max (log r) CJ(l - Gb(xr)) (l-Gb(x))k-2 gb(X)dx.

Proof Let

p - max (log e )pj(a 1 , 2 ,...;n)

BED j=2 (1)

and k *

q max (log 2) (6* 6* *;n).
-A e J=-2 e(i)

i
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" STo prove the first part of the theorem, it suffices to show that p -q. Since

e0 ce, q<p. We now prove that p<_q. For this, it suffices to show the following.

Given ( ,...,k) e0, there exists (66,...,0k) such that

k 1

J!(log Ce e Okn
'-S0( *S '

k 
*6 )

I Clog 1(2)) * * k
j=2 0(1)

• * * * * *

Let 01=0(1), 82=03=.o =ek =(2)' Obviously, e(2) =r 9(1) for some r>l and

-" Ce2,...,0k) a e . Also,
ok

?log(.ee (2) )pe 0 2 ' n)
j=2 (1) " ,1 '

k
- (log r) p1 (Ole 2,...,k;n)
J=-2

(log r) (.1 - p 0 ;n)
(- 1 (6 1 ,6 2 ,...,

< Ulog r) (l-p1 (e1, 02,...,k;n),

by Lemma 3.2

< (log r) P * ;n)bk kA,,*

log( (01,29 .... k; n)

J=2 a
j- (1)

This shows that p -q and hence max L(L-n) - max L(e;n). Lemma 3.1 provides the

exact expressions for max L($n).
OC 0

In view of the above theorem, the critical function in the determination of

the minimax sample size is the following one:

f(r)-(logr) (1- (1-Gb (x/r)) k-i (x)dx. rl,

where b - cn.



We undertake the study of the above function in Section 4. Now, we work out

the maximum of the lass function L(Ln) under the penalty functions of type 2.

Let 0 <8 <1 and a >0 be fixed. We want to maximize L(Gn) over all 2.e

for each sample size n under the penalty functions of type 2. See Section 2.

For this purpose, we introduce the following subset of 0.

0. f(Jel 2 .. e) P- ; i- e1. W e2  eki

The following theorem works out explicitly the desired maximum of the loss

function.

Theorem 3.4 The following, statements are true.

(1) if (0, e92 ,.., k~ ) then

Pl (a l0 2,...ek ;n) . FO( ab(x)k1g~~x

(2) if (e113 2 ,...ek ) C 01, then

L(O 1to 29 00ek ;n)

k
- C(n) +a I P(6e1 to 2 )...ek ;n)

J=2J

- C(n) +a(l -p 1(13 1O 29...,ek;n)),

(3) max L(O 1,02 **O*ek ;n)

-max L~e 1'e2 9**Oek ;n)

(l~e2%...,ekhe1

-C(n) +a(l -F(IG bx)) kl g, )dx).

(Recall that b -cn.)
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Proof.

(1) if (619e2,.. e Gl, then 16 , a~ 6e se w3 a* So, a() l

e -2) = * 06me -k according to our convention. Therefore, from (2.2),

rk 8
P 1(8 e'2" O n) - j 1 b60)x)bxd

= F(1 -G b(6x) k-l&()dx

(2) If (e lte 2,..,ek ) c91. then Wj(el*62 '..."8k) - a for all j -2,3,o..,k.

Consequently,

k
L(e1'e2 0..,e k;n) -C(n) + I w eV2 'k) 616t'90

k

by (1) above.

(3) Since C

p Cel 2"OOk)C L(98l,8 2 660.6ek ;n)

>max L(O e,..e;n) sq, say.

From (2) above, q -C(n) +a(l-JU -G b(dx)) k1g.0(x)dx). To complete the proof, it-

is enough to show that p. q. For this, we show that for any (e 10e 29...,ek) in 0,

L(2V82"~* a k;n) <q.
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Let (801,2,...,0k ) e G. Let ) ... <e-(k) be the ordered arrangement of

S1,02,...0 k in increasing order of magnitude.
e(1)e

Case ei). 1l) > 6 for all j -2,3,...,k. Thene(j)

L(el,e21,.",ek;n) - C(n) +0<q, obviously.

Case (ii). There exists j in {2,3,...,k} such that <6. Let j be the smallest
-- e Q ))

integer in {2,3,...,k} such that < 6. This -ans-that

8(I) > 6 for all ii-1,2,...,J*-1e (i)

and
e(1) < 6 for all i - J*, j* +l,...,k.

We(i)

Then
k

L(el,e2,...,ek;n) = C(n)+a j P (o 1e2,...,ok;n)

k

< C(n)+a I P (el e2,...,ek;n)

< C(n) +a(l -P( 01, 2 ,...,8k;n)).

Let us calculate Pl(Dl, 2,...,sek;n). Note that

1 for j -2,3,... J*-l
(j)

and

IM < 6 for j -J*,J*+l,...,k.
(j)

Therefore,
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(1) x < x for j2,3,...,J*-l

(J)
and

x- < &<x for JJ*,J*+l,...,k

for all positive x.

Consequently,

P I (1,029 ... 99 ,k;n)

j= k (1)}
11 1- Ol) x))))& (d)dx

= n o.- ( :-1-jO J=2 (j)

Tj(l-G( ))e (1) -Ga x bWd

>_ (1- b~lJ*-2 (- ( )k-j*+lo g(x~dx-0F (1 C1GE- ~ Gx))g.) (x6dx

From the above inequality, we obtain

"C(n) +a(l -Pl1(61l, 2,...,9k0))

" C(n) +a(l - TO(1-G Gb(x)) J*-2 (1-G b(6x)) k-j*+igb (x)dx) •

Now, we show that

FO 0(1i- G (x)) J*-2 (1 - G b (x)) k'j*+ gb (x)dx

FO 0(1 - (a )) k-l gb(x)dx

Since 0 < <1, G b(6x) <Gb(x) for all positive x from which it follows that

(I-G(x))J*'2 <l (-Gb(6X)) J*-2 for all positive x. This inequaltiy yields



L(O1 ,82,- •,8 k;f;n)

< C(n) +a( 1 -G b (x)) 
J *-2 (1 -G b i.x)) k-J*+ g(x)dx

< c(n) + a(- )0q< C(n) + a~l -FO(1 -U,,(Sx))k-l g(x),x) -q.

This completes the proof.

In the case of penalty functions of type 2, the maximum of the loss function

L(O;n) over 0 works out quite explicitly. In order to find the minimax sample

size, we need to minimize this maximum with respect to n. We take up this problem

in Section 4.

4. Numerical Illustrations

The selection of the best Gamma population has considerable bearing in the

selection of the population which is least variable. Let nl 2,..', k be k normal

populations with i-th population having mean Ci and variance 8 > 0. The best popu-

lation among these is the one with the smallest 8 . If Xii, J -l,2,*..,n is an-2
ramdom sample of size n from iri, then we could use the statistics Ti -  2 (Xij-Xi)

j -l
i -1,2,...,k to discriminate the populations rl,r 2 ,...,Trk. T /281 has Gamma

distribution with shape parameter equl to Cn-1)/2 and scale parameter equal to

unity. In this case, in order to find the minimax sample size, one has to

maximize N

L(r;nl -C(n) + C2 (log r) (1 - (13x -dx)/r>k-lg b (x>dx>

over r >1. for every fixed n -,3,..., and then this maximum is to be minimized over

the set {2,3,4,...}, where b - (n-l)/2. In this section, we address ourselves to

the problem of determining minimax sample sizes when b - n/2.

The critical function in the maximization of L(r;n) over r>l is the function

f n,k(T)-a log r 1- Fn I -Gb(x/rD k-l gb(X)dx),  r >1,

-' " " m i ' " I 0



16

where b - n/2. Determination of the maximum of this function analytically does

not seem to be feasible. It is obvious that fn (1) - 0 and one can prove that

lim fn, k(r) - 0. An extensive tabulation of this function over the domain of

definition 11,-) of r for various values of n and k suggests that this function

is unimodal. These calculations yielded the following tables. (Let rn,k denote

the number at which fn,k(rnk) is maximum.)

TABLE 1

No. of populations
k 2 3 4 5 6

sample size rn,k rn,k  rn,k  rn,k  rn,k
n n k "" n
2 4.06 5.21 6.26 7.24 8.18
3 3.09 3.77 4.34 4.85 5.32
4 2.69 3.20 3.60 3.96 4.27
5 2.47 2.88 3.21 3.48 3.72
6 2.32 2.68 2.96 3.19 3.39
7 2.22 2.54 2.79 2.99 3.16
8 2.15 2.44 2.66 2.84 3.00
9 2.09 2.36 2.57 2.73 2.87

10 2.04 2.30 2.49 2.65 2.77
11 2.00 2.25 2.43 2.57 2.69
12 1.97 2.21 2.38 2.52 2.63
13 1.95 2.18 2.34 2.46 2.57
14 1.92 2.14 2.30 2.42 2.52
15 1.90 2.12 2.27 2.39 2.48
16 1.89 2.10 2.24 2.35 2.45
17 1.87 2.07 2.22 2.33 2.41
18 1,86 2.06 2.20 2.30 2.39
19 1.85 2.04 2.18 2.28 2.36
20 1.84 2.03 2.16 2.26 2.34

The following pattern emerges among r nks from the above table.n,K

(i) rm,kr. nk if m>n.

( ri) rkrno if k<s.

Using the property (i) mentioned above, we promulgate the following strategy

to determine minimax sample sizes.

Strateay. k is fixed. Find r2,k, the point at which f2 ,k(r) is maximum. Evaluate

L(r;n) for r-1.0, 1.1, 1.2 ,...,r2,k and n-2,3,...,20, These values are tabulated
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in a two-way gridrows corresponding to r and columns to n. For each column in

the two-way grid, locate the maximum. Under each column representing a particular

sample size n, we know that the maximum of L(r;n) occurs at some value of r between

1.0 and r2,k. See property (i) above. Then the column for which this maximum is

minimum is located. The corresponding sample size is the required minimax sample

size.

If the column maximums are increasing right upto r -20, then the minimax sample

size is >-20. In such a case, we need to include some more sample sizes n-21,22,...

etc. For largevalues of n, evaluation of L(]r,n) may be beyond the reach of many

computers. Later, in this section, we give asymptotic formulas for L(r;n).

The above method of determining minimnax sample sizes is a modification of

a procedure suggested by Ofosu (1972). This modification works faster than the

methods outlined by Ofosu (1972).

By way of illustration of the working of the above strategy, we include

the following examples.

1. No. of populations, k -2,3,4-5,6.

2. c0=0 , cll , d-1 so that C(n) =kn.

3. c2 -50(25) 500.

The loss function then becomes

L(r;n) -kn + c2(log r) (Il-i10(l - Gb(x/r)) k-l gb(X)dx),

r>l, n=l,2,3,4,..., where b-n/2.

The minimax sample sizes are given in the following Table.

JI
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Table 2

Minimax sample sizes (n) and minimax loss L(n) under penalty functions of type 1.

kI 2. 5 .6
c .n L(n) n ,L(n) n L(n) n L(n) n L(n)

50 3 27.79 3 42.60 3 53.79 3 63.07 3 71.18
75 4 38.55 4 52.25 4 72.87 4 84.90 4 95.63
100 4 48.74 5 73.23 5 90.99 5 105.53 5 118.15
125 5 58.76 5 87.79 6 108.69 6 125.63 5 140.19
150 5 68.53 6 101.97 6 125.63 6 144.75 6 161.15
175 5 78.29 6 115.97 7 142.57 7 163.80 6 1.82.01
200 6 87.95 7 129.79 7 158.93 7 182.20 7 202.02
225 6 97.44 7 143.39 7 175.30 7 200.60 7 222.02
250 6 106.94 7 156.99 8 191.33 8 218.47 8 241.58
275 6 116.43 8 170.43 8 207.26 8 236.32 8 260.94
300 7 125.90 8 183.74 8 223.20 9 254.05 9 280.17
325 7 135.23 8 197.05 9 238.82 9 271.47 9 299.02
350 7 144.55 9 210.36 9 254.42 9 288.90 9 317.86
375 7 153.88 9 223.45 9 270.02 10 306.11 10 336.56
400 7 163.20 9 236.55 10 285.46 10 323.18 10 355.00
425 7 172.53 9 245.65 10 300.80 10 340.25 10 373.43
450 8 181.76 9 262.74 10 316.14 10 357.33 11 391.85
475 8 190.96 10 275.77 11 331.36 11 374.18 11 409.95
500 8 200.17 10 288.71 11 346.48 11 390.97 11 428.05

Now, we consider the case of penalty functions of type 2. From Theorem 3.4,

max L(Vn)

M -C(A) +a(l - TO(1- G (Sx))k-lsb(xldx,

for n-1,2,3,..., 0<6 <1 and b - cu. In order to find the minimax sample size,

we need to minimize the above function over n-1,2,3,... for a given k,S, c and

C(n) - kn. As an illustration, we take c - - and a - 100(.00)600 and determine the
2

minimax sample sizes for 6 -0.5, 0.6, 0.7, 0.8, 0.9 and k -2,3,4,5.

i~1 i)d""
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Table 3

Minimax sample sizes (n) and minimax loss function L(n) under penalty functions

of type 2.

k 2 3 4 5

a n L(n) n L(n) n L(n) n L(n)

100 7 32.94 6 51.91 4 66.34 3 76.62

200 12 48.42 13 77.74 12 103.05 10 124.94

300 16 58.53 17 94.24 17 126.31 16 155.67
6-0.50 400 18 66.50 20 106.85 20 143.55 20 177.86

500 19 73.66 21 118.06 22 158.19 22 195.95

600 20 80.40 22 128.63 23 171.90 23 212.43

k 3 4 5
a n L(n) n L(n) n L(n) n L(n)

100 5 39.51 4 59.71 3 72.64 3 82.13

200 12 62.87 12 98.81 9 126.25 7 146.84

300 18 79.27 19 126.09 16 165.13 13 197.58
6-0.60 400 20 92.87 22 147.61 22 94.60 20 236.20

500 21 105.62 24 167.39 24 220.04 24 267.55

600 22 117.95 25 186.07 26 243.92 26 296.22

2 3 4 5
a n L(n) n L(n) n r L(n) n L(n)

100 3 44.92 3 64.84 3 77.35 3 84.46

200 9 78.27 7 117.35 4 142.40 3 157.92

6-0.70 300 17 104.50 15 160.86 9 200.31 7 227.19

400 21 126.52 22 196.51 17 249.92 11 289.45

500 22 147.28 24 228.24 24 292.15 18 343.79

600 23 167.53 26 258.89 26 330.52 25 391.25

2 3 4 5
a n L(n) n L(n) n L(n) n I L(n)

100 2 48.64 2 68.73 2 78.72 2 86.38

200 6 91.40 3 129.12 2 149.56 2 162.77

300 9 129.59 7 186.78 3 219.63 2 239.156-0 .80 I
400 17 164.14 11 241.04 7 286.27 3 314.75

500 21 195.64 17 291.00 9 350.36 7 387.85

600 23 225.92 23 337.22 14 411.22 7 458.42
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Table 3 (continued)

* Miniziax sample sizes (n) and minimax loss function L(n) under penalty functions

of type 2.

Z 4 5

aN a Ln) n L(n) n L(n) n L(n)

100 2 51.56 2 70.48 2 81.17 2 88.46

200 2 99.13 2 134.96 2 154.33 2 166.91

SIN0.90 300 3 146.30 2 199.44 2 227.50 2 245.37

400 7 112,21 j3 263.69 3. 301.68 3 326.10

500 7 ~236.76 4 327.34 3 374.10 2 402.27

600 i9 281.05 7 389.15 3 1446. 52 2 480.73

5. Msymvtotic Minim=x Value of It

In this section, we approximate the following integral

F 1-G X k-lgxd
n

for large values of ni by an integral involving the standard normal distribution,

where ge is the probability density function of a Gamma distribution with

parameters n and 1, ie,

-1 a-x n-1i 0<X 0gn~') -~ I-n

and G ()is the distribution function associated with g.). This integral appears

in the loss functions considered under penalty functions of types 1 and 2. This

integral can be realized probabilistically as follows.

Let Y pyp@ Y be k independent identically distributed random variables

with common probability density function g,(-) given above. Then for any r >1,

P k r; ) -Pr Y j i n 2,3,eee,k)

IN f(l - G (; ) ) ~g,(x)dx.

Fn " n r



21

j 2 for every j -1,2,...,k. We want to apply Wilson-

Bilferty's transformation to each 2Y J* See Kendall and Stuart (1977, p. 398-399).

Let

1
2n 9n

j 1 1/2
9n

for j -1,2,...,k.

Z ,Z2,... ,9 Z are independent random variables and for large n, each Z. has standard

normal distribution. We also note that

2Y1 < 2tY

if and only if

2Y1 1/3 a 1 1/3,2Y1/3 . 1

1 1/2 < 1/2

S L2n -(-9n

"~ -1/2
9n (-);

-/ ")r /3

911

+ (1 )l/2

if and only if

z < r1/3z + an,r

for any j -2,3,... ,k, where
(I- -)(rll 13 - )

9U1
an,r 1 (1)1/2

Now, we are in a position to approximate the integral in focus as follows.

For large n,
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J(1-G( k) gn (x )dx - krn

- PT < Z Y a 2,9 j-,3,..
j r

) 1/
- ~ r (2-0

where (() is the distribution function of the standard normal probability

model.

The loss function under penalty functions of type 1 for airge n, becomes

L (r;n) -C (n) +c (log r) (1- (l- b( r)) k-i

2____ 1/3

/exp(- -)dx)

for r> I and a in N, where b - cu.

To find the minimax sample size n, the above approximation can be used in

the strategy outlined in Section 4.

The saximm of the loss function over the entire parameter space under

penalty functions of type 2, for large a, becomes
2

x
x-b d6k-l 1. 2

C(n) +a(1- U(e1-

for n in N, where d -cu and

(1- ) ((T)13-)
b . (1) 1/2

Similar approximations can be provided for the problem of selecting the

best normal population with least variance.

....... IC
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